Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reyzin, Leonid; Stebila, Douglas (Ed.)
-
Böhme, Rainer; Kiffer, Lucianna (Ed.)We consider the problem of secret leader election with accountability. Secret leader election protocols counter adaptive adversaries by keeping the identities of elected leaders secret until they choose to reveal themselves, but in existing protocols this means it is impossible to determine who was elected leader if they fail to act. This opens the door to undetectable withholding attacks, where leaders fail to act in order to slow the protocol or bias future elections in their favor. We formally define accountability (in weak and strong variants) for secret leader election protocols. We present three paradigms for adding accountability, using delay-based cryptography, enforced key revelation, or threshold committees, all of which ensure that after some time delay the result of the election becomes public. The paradigm can be chosen to balance trust assumptions, protocol efficiency, and the length of the delay before leaders are revealed. Along the way, we introduce several new cryptographic tools including re-randomizable timed commitments and timed VRFs.more » « less
-
Micciancio, Daniele; Ristenpart, Thomas. (Ed.)We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials. Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopad- hyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable code that is secure against tampering by bounded-size arithmetic circuits. We show applications of our non-malleable code in constructing non-malleable se- cret sharing schemes that are robust against bounded-degree polynomial tampering. In fact our result is stronger: we can handle adversaries that can adaptively choose the polynomial tampering function based on initial leakage of a bounded number of shares. Our results are derived from explicit constructions of seedless non-malleable ex- tractors that can handle bounded-degree polynomial tampering functions. Prior to our work, no such result was known even for degree-2 (quadratic) polynomials.more » « less
An official website of the United States government

Full Text Available